Novel Product and Its Derivatives from the Reaction of Lappaconitine with HIO₄

Qiao Hong CHEN¹, Feng Peng WANG¹*, Kai Bai YU²

¹Department of Chemistry of Medicinal Natural Products, School of Pharmacy, West China University of Medical Sciences, Chengdu 610041 ²Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041

Abstract: Treatment of lappaconitine **1** with HIO_4 at room temperature afforded **2** in 41% yield, to which Br_2 -HOAc solution was added and allowed to stand at room temperature for 2 days to give **3** (13%) and **4** (31%).

Keywords: Norditerpenoid alkaloid, lappaconitine, oxidation.

Lappaconitine **1**, a bisnorditerpenoid alkaloid, was isolated from many plants of *Aconitum* and *Delphinium* species such as *A. barbatum* var. puberulum, *A. sinomontanum*^{1, 2}. It is now used in the clinical practice as an analgesic in China³, and antiarrhythmic drugs in Uzbekistan^{4, 5}. In our attempts to prepare the 10-oxygenated derivatives by treating lappaconitine **1** with HIO₄ followed by bromination, unexpected by-products were obtained in modest yields. This communication described the isolation and characterization of these novel compounds **2**, **3** and **4**.

Lappaconitine **1** (237 mg, 0.40 mmol) was allowed to react with HIO₄ (2.0 mmol). After workup, the mixture of crude products was chromatographed on Si gel column eluting with cyclohexane-acetone (5:1) to give compound **2**⁶ (98 mg, 41% yield) and the starting material (44 mg) (**Scheme 1**). Compound **2**, $C_{32}H_{42}N_2O_8$, mp. 215~216°C, had a ¹³C NMR spectrum (**Table 1**) that was in agreement with the finally established structure. The NMR and IR spectra of **2** exhibited three methoxyl groups (δ_H 3.21, 3.32, 3.57, each 3H, s; δ_C 55.4 q, 57.1 q, 59.8 q), one ketone group (δ_C 210.5 s; 1747 cm⁻¹) and an anthronyl group (δ_H 8.65, 1H, d, *J*=8.0 Hz, H-3"; 7.48, 1H, t, *J*=8.0 Hz, H-4"; 7.02, 1H, t, *J*=8.0 Hz, H-5"; 7.97, 1H, d, *J*=8.0 Hz, H-6"; 2.21, 3H, s, COCH₃; 11.03, 1H, s, NH); δ_C 167.5 s, 115.9 s, 141.8 s, 120.4 d, 134.6 d, 122.6 d, 131.3 d, 168.9 s, 25.5q). Comparison of lappaconitine **1**^{7,8} with **2** showed that the ¹³C NMR data of the two alkaloids were very different, especially in the signals derived from the rings C and D, indicating that **2** was probably a novel skeletal alkaloid. Finally, its structure was established as **2** by single crystal X-ray analysis (**Figure 1**), and all of the ¹H- and ¹³C-NMR data (**Table 1**) were unambiguously assigned based on 2D-NMR (HMQC, ¹H-¹H COSY, HMBC).

By treating **2** with Br₂-HOAc at room temperature for 2 days, compounds **3**⁹ (13%) and **4**¹⁰ (31%) were obtained (**Scheme 1**). Compound **3**, $C_{31}H_{40}N_2O_8$, had an additional

Qiao Hong CHEN et al.

hydroxyl group but lost one methoxyl group when compared with **2**. Their ¹³C NMR spectra were very similar except for some signals attributable to C-5, C-7, C-8, C-9, C-10, C-13, C-14 and C-15 (**Table 1**), thus leading to the elucidation of the structure of compound **3**. Assignments of its ¹H- and ¹³C NMR data (**Table 1**) were carried out mainly by comparison with those of **2**. Compound **4**, C₃₁H₃₈N₂O₈, was isolated as a white amorphous powder. Its ¹³C NMR spectrum showed distinctive signals at δ_C 213.7 s, for a ketone group and δ_C 203.6 s, 144.8 s and 148.9 s for an α , β -unsaturated ketone group, suggesting that it had a double bond Δ^{13} (¹⁴). Thus, its structure might be assigned as **4**. The formation of **4** can be explained apparently by bromination, elimination and a retroaldol process. All of the ¹³C NMR data (**Table 1**) of compound **4** were assigned by comparing with those of lappaconitine **1**, especially in 2D-NMR (¹H-

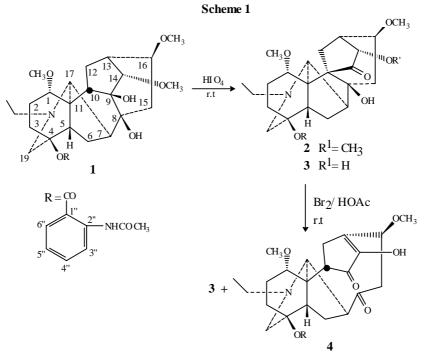



Figure 1. ORTEP drawing of Compound 2

carbon	1	2	3	4
1	84.0	77.7d	76.3 d	81.0 d
2	26.0	25.4 t	25.5 t	25.8 t
3	31.7	31.9 t	31.9 t	31.8 t
4	84.5	84.0 s	84.0 s	81.5 s
5	48.3	48.0 d	46.9 d	47.6 d
6	26.6	19.8 t	20.3 t	25.5 t
7	47.4	42.1d	43.7 d	51.2 d
8	75.3	77.7 s	82.0 s	213.7 s
9	78.4	210.5s	215.0s	203.6 s
10	49.7	60.3 s	54.4 s	47.0 d
11	50.8	54.7 s	54.6 s	54.4 s
12	24.0	29.6 t	30.0 t	28.5 t
13	36.1	32.6 d	44.3 d	148.9 s*
14	89.9	85.9 d	80.2 d	144.8 s*
15	44.6	34.5 t	37.8 t	37.6 t
16	82.7	79.5 d	79.8 d	81.0 d
17	61.3	63.8 d	64.4 d	72.8
19	55.3	55.1 t	55.2 t	54.1
NCH ₂ CH ₃	48.9	50.5 t	50.6 t	48.7
NCH_2CH_3	13.4	13.2 q	13.4 q	12.6
1'	56.4	55.4 q	55.7 q	57.3
14'	57.7	59.8 q		
16'	55.9	57.1 q	57.8 q	56.8
C=O	167.2	167.5 s	167.6 s	167.3
1"	115.6	115.9 s	115.6 s	115.4
2"	141.4	141.8 s	141.5 s	141.6
3"	120.2	120.4 d	120.2 d	120.3
4"	134.2	134.6 d	134.4 d	134.5
5"	122.2	122.6 d	122.4 d	122.3
6"	130.9	131.3 d	131.2 d	130.9
NHCOCH3	168.9	168.9 s	169.0 s	169.0
NHCOCH3	25.4	25.5 q	25.6 q	25.4

Table 1. ¹³C NMR data of compounds 1^{6,7}, 2, 3 and 4

*exchangable.

¹H COSY, HMQC, HMBC). But, it should be pointed out that assignments for C-13 and C-14 in ¹³C NMR spectrum of **4** are still not unequivocal without observation of the conclusive correlated peaks and lack of the comparable analogues.

Acknowledgment

Support of this work by the National Natural Science Foundation of China (No. 39370807) and the Chengdu Diao Pharmaceutical Company is gratefully acknowledged. We also indebted to Professor Xiao Tian LIANG for helpful advice on the subject.

References and Notes

1. S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, In "Alkaloids: Chemical and

Qiao Hong CHEN et al.

Biological Perspectives" vol. 2, ed. S. W. Pelletier, John Wiley & Sons, New York, **1984**, p. 205.

- 2. S. Y. Chen, Y. Q. Lui, C. R. Yang, Acta Botanica Yunnanica, 1980, 2, 473.
- 3. J. S. Shan, H. Q. Mao, *Chinese. Pharmceutical Journal*, **1993**, 28, 378.
- 4. F. N. Dzhakhangirov, M. N. Sultankhodzhaev, B. Tashkhodzhaev, B. T. Salinov, *Chem. Nat. Compds.*, **1997**, *33*, 190.
- 5. F. N. Dzhakhangirov, F. Sokolov, A. N. Verkhratskii, *Allapinia -- A New Antiarrhythmic Drug of Plant Origin*, Fan, Tashkent, **1993**.
- 2: colorless rhombic crystals, mp. 215-216°C (CH₃OH); IR (KBr) cm⁻¹: 3467 (OH), 3278 6 (NH), 1747 (five-membered cyclic ketone), 1703 (COO), 1681. ¹H NMR (400 MHz, CDCl₃) δ 3.26 (1H, dd, J=10.8, 6.8 Hz, H-1β), 2.20 (2H, m, overlapped, H₂-2), 1.76, 2.76 (each 1H, m, overlapped, H-3a, H-3e), 2.22 (1H, m, overlapped, H-5), 1.54 (1H, dd, J=14.4, 5.6 Hz, H-6a), 2.56 (1H, m, overlapped, H-6e), 3.64 (1H, m, overlapped, H-7), 1.38 (1H, dd, J=11.4, 4.2 Hz, H-12 a), 1.92 (1H, dd, J=11.4, 5.2 Hz, H-12e), 3.04 (1H, m, overlapped, H-13), 3.65 (1H, d, J=8.0 Hz, H-14), 1.75 (1H, m, overlapped, H-15a), 1.93 (1H, dd, H, J=11.4, 5.2 Hz, H-15e), 4.09 (1H, dd, J=8.0, 6.4 Hz, H-16α), 3.09 (1H, s, H-17), 2.75, 3.73 (each 1H, ABq, J=9.6 Hz, H2-19), 2.53 (2H, m, overlapped, NCH2), 1.08 (3H, t, J=7.2 Hz, NCH2CH3), 2.21 (3H, s, NHCOCH₃), 8.65 (1H, d, J=8.0 Hz, H- 3"), 7.48 (1H, t, J=8.0 Hz, H-4"), 7.02 (1H, t, J=8.0 Hz, H-5"), 7.97 (1H, d, J= 8.0 Hz, H-6"), 3.21 (3H, s, 1α–OCH₃), 3.57 (3H, s, 14α–OCH₃), 3.32 (3H, s, 16β–OCH₃), 11.03 (1H, s, NH, exchangeable), 4.05 (1H, s, 8-OH, exchangeable); ¹³C NMR (100 MHz, CDCl₃): see **Table 1**; EIMS m/z 582 [M]⁺ (14), 551 [M-31]⁺ (62), 404 (78), 403 (100), 388 (38), 372 (28), 178 (20), 162 (26), 137 (29), 119 (45); HREIMS *m*/*z* 582.2931 (cald for $C_{32}H_{42}N_2O_8$ 582.2941); Crystal structure for 2: a colorless orthorhombic crystal from CH₃OH was mounted on P₄ four circle diffractmeter and exposed to graphite-monochromated MoK α irradiation. The unit cell parameters are a=12.061 (2)^o_A, b=12.799 (2) A_{A}° , c=13.867 (2) A_{A}° in space group $P2_{1}2_{1}2_{1}$. Of the 4303 measured with $1.91^{\circ} < \theta < 25.99^{\circ}$ scan, 3929 were independently observed at the level of $F > 4\sigma$ (F). The structure was solved by the direct method using the program SHELXTL and the atomic parameters were refined by the full-matrix least squares on F^2 method. The final R indexes $[I < 2\sigma(I)]$ was R¹=0.0386, WR²= 0.0697.
- 7. S. W. Pelletier, N. V. Mody, R. S. Sawhney, Can. J. Chem., 1979, 57, 1652.
- 8. S. W. Pelletier, N. V. Mody, A. P. Venkov, N. M. Mollov, Tetrahedron Lett., 1978, 5045.
- 3: white amorphous powder. IR (KBr) cm⁻¹: 3442 (OH), 3318 (NH), 1749 (five-membered cyclic ketone); ¹H NMR (200 MHz, CDCl₃) δ 1.10 (3H, t, *J*=7.1 Hz, *N*CH₂*CH*₃), 2.21 (3H, s, *N*CHO*CH*₃), 3.33, 3.45 (each 3H, s, 2×OCH₃), 8.65 (1H, d, *J*=8.2 Hz, H-3"), 7.50 (1H, t, *J*=8.2 Hz, H-4"), 7.04 (1H, t, *J*=8.2 Hz, H-5"), 7.95 (1H, d, *J*=8.0 Hz, H-6"), 11.02 (1H, br.s, NH). ¹³C NMR (100 MHz, CDCl₃): see **Table 1**; EIMS *m*/*z* 568 [M]⁺ (5), 551 (10), 390 (59), 389 (100), 360 (73), 330 (73), 179 (49), 162 (34), 137 (64), 119 (86); HREIMS *m*/*z* 568.2765 (cald for C₃₁H₄₀N₂O₈ 568.2784).
- 4: white amorphous powder. ¹H NMR (400 MHz, CDCl₃) δ 3.63 (1H, dd, *J*=10.8, 6.8 Hz, H-1β), 2.10, 2.60 (each 1H, m, overlapped, H₂-2), 1.98 (1H, m, overlapped, H-3a), 2.80 (1H, m, overlapped, H-3e), 3.17 (1H, d, *J*=5.6 Hz, H-5), 2.10 (2H, m, overlapped, H₂-6), 2.76 (1H, overlapped, H-7), 3.06 (1H, t, *J*=4.8 Hz, H-10), 1.80 (1H, d, *J*=16.8 Hz, H-12a), 2.53 (1H, dd, *J*=16.8, 7.2 Hz, H-12e), 2.01 (1H, dd, *J*=12.4, 2.8 Hz, H-15a), 2.88 (1H, t, *J*=12.4 Hz, H-15e), 4.08 (1H, m, W1/2=9.4 Hz, H-16α), 3.78 (1H, s, H-17), 2.16, 3.80 (each 1H, ABq, *J*=11.2 Hz, H₂-19), 2.44 (2H, q, *J*=6.8 Hz, *NCH₂*), 1.05 (3H, t, *J*=6.8 Hz, *NCH₂CH₃*), 2.25 (3H, s, NHCOCH₃), 8.66 (1H d, *J*=8.0 Hz, H-3"), 7.55 (1H, t, *J*=7.1 Hz, H-4"), 7.06 (1H, t, *J*=7.1 Hz, H-5"), 7.96 (1H, d, *J*=8.0 Hz, H-6"), 3.47 (3H, s, 1α-OCH₃), 3.30 (3H, s, 16β-OCH₃), 11.04 (1H, s, NH, exchangeable), 6.65 (1H, br.s, 14-OH, exchangeable); ¹³C NMR (100 MHz, CDCl₃): see Table 1; EIMS *m*/z 566 [M]⁺ (65), 551 [M-15]⁺ (35), 480 (21), 119 (30), 58 (100); HREIMS *m*/z 566.2634 (cald for C₃₁H₃₈N₂O₈ 566.2628).

Received 11 February 2000